Jet engine components

Jet engines are complex pieces of machinery that propel giant metal contraptions tens of thousands of feet in the air. They’re a type of combustion reaction engine that discharge fast-moving streams of fluid and generate thrust by propulsion. They’re made of different parts: a fan, compressor, combustor, turbine, nozzle, and exhaust.

The fan, or the air inlet, is a large spinning fan made of titanium that sucks in a large quantity of air. After sucking, it speeds up the air and splits it into two parts: one that goes through the core part or through the center of the jet engine where it is acted upon by other engine components, and one that “bypasses” the core and goes through a duct that surrounds the core and produces much of the force that propels the airplane forward.

The compressor is the first component of the core. It’s made up of fans with many blades attached to the shaft and has many different stages, each consisting of rotating vanes and stationary stators. As air goes through the compressor, the heat and pressure increases, the energy is derived from the turbine and passed along the shaft, and then the compressed air is forced into the combustion chamber.

In the combustor, there are as many as 20 nozzles to spray fuel into the airstream, and the mixture of air and fuel catches fire. The fuel and oxygen burning produces hot expanding gases, leading to high temperatures and high-energy airflow.

The high-energy airflow leaves the combustor to spin the turbine, a series of bladed discs that act like a windmill. The turbines are linked by a shaft to turn the blades in the compressor and to spin the intake fan at the front. This process takes some energy from the high-energy flow. In some turbine engines, additional energy is used to drive things like the propellers, bypass fans, and rotors.

The last part is the nozzle and exhaust, where the thrust is actually produced. The hot energy-depleted airflow that passed through the turbines and the colder air that bypassed the core converge and exit the nozzle, exerting a force that propels the aircraft forward.

At Jet Parts 360, owned and operated by ASAP Semiconductor, we’re a leading supplier of all things aircraft and aviation. From engine components to cockpit instruments, we have it all. Visit our website,, to get started on a quote.

Read more »

Known as the “six-pack” because of the three-on-three placement, most aircraft have 6 main flight instruments that help pilots fly. There are two categories of flight instruments, the static or pitot-static, and the gyroscopic. Pitot-static instruments include the airspeed indicator, altimeter, and vertical speed indicator. Gyroscopic instruments include the attitude indicator, heading indicator, and turn coordinator.

Airspeed indicators give the indicated airspeed by comparing ram air pressure from the pitot tube to static air pressure from one or more static ports. They’re color-coded into ranges of normal operating, flap operating, and caution ranges, and indicate minimum and maximum speeds.

Altimeters indicate the aircraft’s vertical distance from the mean sea level, corrected for outside air pressure. As the plane climbs and descends, air pressure decreases and increases respectively. This changing air pressure is then compared to the static pressure inside a sealed vacuum, and then translated into the altitude.

Vertical speed indicators express the rate of climb or descent of the aircraft. During climbs and descents, the capsule compresses and expands respectively. The indicator measures and compares the static pressure inside of an expandable capsule to the metered static pressure outside of the capsule. The difference is measured and translated into the vertical speed.

Attitude indicators are gyroscopic instruments that indicate the changes to pitch, attitude, and bank; they tell the pilot if the aircraft is climbing, ascending, turning, or straight and level in one glance. They have a miniature plane and an artificial horizon background that senses movement from the gyroscope and adjusts accordingly to represent the aircraft’s relative position and movement.

Heading indicators are gyroscopic instruments that provide directional information like a compass would. Not north-seeking on its own, aligned to a magnetic compass, the heading indicator can turn and depict an accurate heading between 0 and 359 degrees as the aircraft turns.

Turn coordinators are gyroscopic instruments that illustrate the aircraft’s rate of turn or roll. When the aircraft rolls into a turn, a miniature plane shows the corresponding roll. Turn coordinators also have inclinometers, a ball suspended in fluid that acts like a pendulum during flight to depict a coordinated or uncoordinated turn.

At Jet Parts 360, owned and operated by ASAP Semiconductor, we are one of the largest suppliers of aviation parts. From airspeed indicators to turn coordinators, we have every cockpit part and component. For a quick quote or more information, visit our website at or call us at +1-708-387-7800.

Read more »


Ensuring flight safety takes priority above all else when owning and operating an aircraft. In order to provide safe flights for passengers and everyone else on board -regular maintenance must take place. Aircrafts are sophisticated vehicles containing many moving parts that needs to be monitored and inspected frequently to allow good performance. Aircraft maintenance is an essential part and function of ownership and operation. There are many overhead expenses that comes with ownership and often, new owners get blind-sided by the cost of maintenance. Aircraft maintenance should be well understood when being around aviation.

Unlike automobiles, an aircraft cannot simply pull-over to the side of the road when there is a malfunction with the vehicle, that is why aircraft maintenance is highly regulated and taken with great importance. There are usually two main components when it comes to aircraft project management and that is the planner and scheduler. The two parties must work together to complete routine maintenance.

Before every flight, the maintenance team and the aircrew perform a pre-flight inspection to ensure everything is working appropriately on the aircraft as it should. Any vital part of the aircraft that is not working up to standard, the flight will be cancelled until the part can be fixed or replaced. Throughout the aviation industry, there are times when flights are delayed due to maintenance and the scheduled take-off time will differ than the actual take-off time. Aircraft maintenance will remain a vital function of the aviation industry for the years to come.

Read more »


The jet engine marks the current gold standard in aviation. Yet few are aware of the immense evolution the jet engine has undergone over the last 80 years in terms of efficiency, durability, and reliability. It is a true testament to human ingenuity, one that is worth reviewing.

While early jet engines were developed for use in fighter planes as early as 1939, they were fuel guzzlers with little payoff in the way of speed. It wasn’t until 1948 when American engine builders Pratt and Whitney combined two engines into a single larger engine with two compressors, each drawing fuel from its own turbine, that the jet engine became a viable option for commercial aviation. Since then, engine builders have made rapid improvements upon the initial design. One major development of note is the transition from the early “straight-jet” model, in which air passed linearly through the engine, to the “bypass” model, which directs airflow around a central propulsor – thereby reducing noise and maximizing fuel efficiency.

Behind each of these improvements lies a complex pathway of design, building, and testing in accordance with rigorous compliance standards to ensure safety. The design process of a new engine takes approximately ten years from start to finish! Once the initial design has been completed, each component of the engine undergoes systematic analysis. Next, a preliminary prototype is assembled and subjected to an array of extreme force tests and operational scenarios. Upon successfully passing this battery of tests, the engine receives an airworthiness certificate and is eligible for installation in commercial aircraft.

In keeping with the intensity of the development and certification process, modern commercial aircraft can remain in operation for up to 25 years, some even longer depending on the type of jet engine installed. Moreover, the reliability of jet engines has vastly improved. Early jet engines typically allowed for around 2,000 flight hours before requiring a complete overhaul, but today’s jet engines regularly reach 20,000-25,000 flight hours between overhauls.

Read more »


When it comes to operation and functionality to the satisfaction of safety standards on an aircraft; it’s the engine, fuel system, and it’s electrical, hydraulic, pneumatic, mechanical, and electronic systems that keep it running for the passengers and cargo aboard.

However, there is an ongoing argument that debates between systems like IFE (entertainment) being an unnecessary expense for airplanes. The counterargument discusses the need for entertainment. Otherwise, passengers would be cranky during longer flights because of boredom. When passengers become bored or irritable, they require more attention from the flight crew. It is also possible that the passengers could get “air rage” and create issues for fellow passengers and crew.

There are other essential parts of a plane. The engine, fuel system, and its electrical, hydraulic, pneumatic, mechanical, and electronic systems are vital for the plane to take flight. However, cabin air pressurization is essential to create a safe and comfortable atmosphere for anyone on board at a high altitude. While you’re in the air, it is also important to have air-to-ground communication systems without them, since the sky have become more and more crowded over the years, there are higher chances of air collisions. Landing gear and control surfaces also help keep the plane safe from accidents and hazards during landing.

With all the different controls on a plane to help manage all the parts it also brings up the need for high tech computers. Within an aircraft, the piolet needs to be close to all the controls discussed above to guarantee the safety of the passengers and crew as well as the plane itself.

So, after all these possible topics which one is the most important?

Without the turbine aircraft engines, nothing would keep the electric on the plane working. That removes many of the flight communications, as well as all landing gear, and even entertainment. Without the engines, airplanes would not be able to lift off the ground. To solidify this discussion, the engine is so important that it counts for one-half to one-third of every aircrafts net price.

Read more »


Primera Air, an airline based in Riga, Latvia has recently partnered with Airbus for a repair service package. The new tailored support package will cater to Primera Air’s A321 Neo Aircraft and will handle aircraft component services such as repair, transportation, warehousing, technical management and logistics. This package will be supported by one of Airbus’ new pools located in either London or Miami. Services will be handled by dedicated and knowledgeable Airbus fleet management team members. The FHS team will be trained using a data platform from Skywise.

This state of the art data hosting server will keep track of analytics for the A321neo Fleet. The platform will be able to enhance operational levels for inventory, supply chain management, and delivery. Skybus CEO states

” When introducing a new aircraft to an airline it is critical to create a solid foundation from the vet beginning”.

This is exactly why Airbus has offered its support package, to ensure the aircraft fleet introduction starts smoothly and stays smoothly. The program includes the highest level of dispatch performance, keeping planes in the air and flying on time. The support package will begin in early May and will be open for all transatlantic flights.

Airbus is an international leader in the aviation and aerospace industry. They are constantly manufacturing, designing and delivering solutions, services and solutions to customers around the globe. The company was based on a strong European heritage and has since grown to become truly international with over 180 locations and 12,000 direct suppliers across the globe. The company has delivered over 10,926 aircrafts and has achieved a six-fold order book increase in the last 18 years. Airbus is the future, and they are proud to have Primera air join their fleet.

Jet Parts 360 has a dedicated and expansive array of Airbus parts and components. We serve customers as a one-stop shop and primary destination for product sourcing. Jet parts 360 will ensure that your needs are addressed in the most expeditious and transparent manner, all the while offering cost-effective component solutions. If you are interested in a quote, please contact our friendly sales staff at or call 1-708-387-7800.

Read more »

Turbo Jet Engines

In this article we will be breaking down the different types of turbo jet engines and how they function. To start off, lets go over the basics. A jet engine works by forcing compressed air through the system and igniting it by mixing the compressed air with fuel. The air then becomes hot and that is what powers the engine. When all mechanisms are running smoothly this successfully produces an airborne plane and an optimal amount of thrust. All turbo jets are considered reactionary meaning the production of energy is simply a reaction to the internal workings.

When looking at different styles of turbo jet engines you will find the turboprop jet engine, turbofan jet engine, turboshaft engine and the ramjet. The turboprop has the same innerworkings but with the addition of a aircraft propeller part. This design is best suited to smaller planes and can be extremely fuel efficient.

The Turbofan has, just as the name might suggest, an added fan. This fan allows the air to circle around the outside of the engine. This produced a much quieter plane and a plan that can cruise at lower speeds more efficiently. The turboshaft is what is inside most helicopters. It is smaller and has more control so that the helicopter can fly in the most efficient way possible.

Lastly, there is the ramjet. This is the most basic jet engine. There are no extra parts or fancy additions to this engine. The whole thing operates by forced air. A simple yet effective mechanic.

Read more »

Air France

Air France Industries KLM Engineering and Maintenance recently announced its plans to create a Supplemental Type Certificate for its A320 aircraft. Air France is a well-known multi-product maintenance, repair and overhaul provider whose mission is to offer technical support for airlines across the board.

As a part of the European Commission’s H2020 HELIOS project through Air France, the Supplemental Type Certificate will be a retrofit for the GADSS Kannad ELT-DT. The Kannad Elt-DT is a global self-tracking beacon that will allow for detailed aircraft position while in flight.

The beacon will allow air traffic managers to figure out the exact location of aircrafts and will allow for notification of distress in flights without having to ask. This new beacon will ensure no aircraft will ever be lost if aircraft failure occurs, a huge advancement for the aerospace industry.

The HELIOS-led project will improve the retrofitting in-service aircraft process. This upgrade will enable operators to use the system under their current fleet. The requirement for this type of beacon was first adopted in 2016 after several highly publicized downed aircrafts could not be located even after long and extensive search efforts.

This new beacon will be applied to almost every aircraft by January of 2021. The Kannad Beacon will activate automatically should the aircraft deviate off the projected flight pattern. The coverage for the beacon is worldwide so no matter how far the flight veers off path it will still be trackable. Kannad is a global leader in navigation and timing, as a company they strive to improve safety, performance and reliability, making them the perfect fit for the creation of the beacon.

Read more »

HNA subsidiary airlines

HNA subsidiary airlines are being equipped with Thales latest In-Flight Entertainment systems on their A330 and A350. Upgrades of the A330 began in late 2017 and the AVANT A350 is expected to enter service summer 2018. AVANT, Thales’s state-of-the-art Android IFE solution, will provide HNA Group Airlines’ passengers a highly customizable experience with a robust selection of features and applications. The new fleet will be equipped with the latest AVANT full high-definition monitors, the most lightweight ever deployed, featuring the Avii Touch Passenger Media Unit. Avii provides intuitive navigation, full Android smartphone look and feel, and acts as a second entertainment screen. Integration of Ka-band connectivity to the AVANT IFE system will provide a fully connected premium passenger experience.

Thales FlytCARE, the nose-to-tail maintenance of in-flight technology ensuring the highest levels of performance, already provided on current HNA Group Airline fleet, will be expanded to these new AVANT A330 and A350 aircraft. The dedicated Aircraft Technical Services team, will support system reliability for the enhancement of passenger experience.

HNA group manages several subsidiary airlines, including Hainan airlines, Capital Airlines, Tianjin Airlines, Lucky Air and West Air. In 2017, Hainan Airlines was honored as Top 10 Airlines by SKYTRAX, a global research firm and provider of professional aviation evaluation services with a focus on airline and airport services. The subsidiary airlines of HNA group already have a combined fleet of over 50 A330 aircraft flying with Thales IFE systems.

Thales Group is a French multinational company that designs and build electrical systems and provides services for the aerospace, defense, transportation, and security industries. It is the tenth largest defense contractor in the world, with 55% of its total sales military.

Jet Parts 360 has a dedicated and wide range of Thales Avionics parts, making us the premier supplier of aircraft parts. We serve customers as a one-stop shop and primary destination for A330 aircraft product sourcing.

Read more »

Air Astana

Pratt and Whitney, a well-known division of United Technologies Corp. and Air Astana (an award-winning flag carrier for Kazakh), recently celebrated the delivery of the airline’s first Airbus A321neo aircraft. This aircraft, which is fueled by the Pratt and Whitney Geared Turbofan engines (GTF), appeared recently at Air Astana’s hub, located in Almaty, Kazakhstan. It was recently schedule for passenger service this new year.

Peter Foster, president and CEO of Air Astana shared his delight in the introduction of the A320neo and the delivery of Pratt and Whitney’s turbofan engines that are geared. Foster believes that Pratt and Whitney will take delivery of the seventeen Geared Turbofan powered A320neo aircrafts until 2020. This will depict the latest in fuel-efficient engine technology that is clean powered.

Air Astana puts into use many different aircrafts that are fueled by Pratt and Whitney and the company’s partnership with International Aero Engines. This includes the PW4000-powered 767 along with the V2500-powered A320 family. The Kazakh airline has placed orders for a number of Geared Turbofan aircrafts, which includes the A320neo, A321neo, and Embraer E190-E2 aircraft.

Rick Deurloo, the senior vice of president of Pratt and Whitney’s sales, marketing and customer care says the company is honored by Air Astana’s trust in them. He stated that the company is focused on delivering experience changing benefits of the GTF engine, which will allow for Air Astana to continue to supply excellent service to its passengers.

The GTF engine, since coming into service since 2016, has continued to showcase its pledge to minimize fuel burn by sixteen percent and reduce the emission of nitrogen oxide by almost fifty percent in comparison to the regulatory standard.

Pratt and Whitney is a world renown leader in the designing, manufacturing, and servicing of aircraft engines, along with auxiliary power units. United Technologies Corporation supplies high-technology systems and services to the industries in the areas of building and aerospace.

Read more »

Recent Twitter Posts

ASAP Semiconductor’s Certifications And Memberships


The only independent distributor with a NO CHINA SOURCING Pledge

Get A Quote